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Finger competition dynamics in rotating Hele-Shaw cells
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We report analytical results for the development of interfacial instabilities in rotating Hele-Shaw cells. We
execute a mode-coupling approach to the problem and examine the morphological features of the fluid-fluid
interface at the onset of nonlinear effects. The impact of normal stresses is accounted for through a modified
pressure jump boundary condition. A differential equation describing the early nonlinear evolution of the
interface is derived, being conveniently written in terms of three relevant dimensionless parameters: viscosity
contrastA, surface tensiom, and gap spacing. We focus our study on the influence of these parameters on
finger competition dynamics. It is deduced that the link between finger competitiod,aBdandb can be
revealed by a mechanism based on the enhanced growth of subharmonic perturbations. Our results show good
agreement with existing experimental and numerical investigations of the problem both in low and high
<0 limits. In particular, it is found that the condition of vanishidgsuppresses the dynamic competition
between fingers, regardless of the valueBo&nd b. Moreover, our study enables one to extract analytical
information about the problem by exploring the whole range of allowed values, Br andb. Specifically, it
is verified that pattern morphology is significantly modified when the viscosity contrastA<t1 varies:
increasingly larger values &>0 (A<0) lead to enhanced competition of outwdrward) fingers. Within
this context the role oB andb in determining different finger competition behaviors is also discussed.
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[. INTRODUCTION portant role in mechanisms of steady-state selectfoacts
decisively in the finger competition dynamics A=0 (A
#0) competition is suppressedthvored, where finger com-
petition is associated with length variability among the fin-
Igered structures.

The question arises as to whether the paramétensdB
. " . also play a relevant role in radial geometry. Possible answers
dnvgn). Traditionally, expenmer)ts.and theory focus on two to this question can be conveniently offered by an interesting
ba3|c Hele-Shaw flow geometries: rectangt[[?x_rﬂ and fa- - yariation of themotionlessHele-Shaw cell setup: thetating
dial [6,7]. In _rectangular geometry the less viscous ﬂu!d ISHele-Shaw problenjl5,1§. In the latter the cell is rotated
pumped against th_e more viscous one along the direction QEjround an axis perpendicular to the plane of the flow, so that
Fhe flow. In the radial case injection is perform_ed through Mhe interfacial instability is driven by centrifugal forces act-
mlgt located on the upper p!ate. In'both.snuatlons, the ms_tal—ng on the interface separating fluids of different densities.
bility can lead to the formation of fingering structures, typi- To some extent the rotating cell problem can be seen as the

caII_y_ characterized by finger tip-splitting andfor finger COM-radial counterpart of the gravity-driven situation in rectangu-
petition phenomena. lar cells[2-5]

In contrast to radial geometry flow, which exhibits both
splitting and competition behaviors, flow in rectangular ge-
ometry normally displays only finger competitip2-5]. Nu-
merical simulation$8—1Q and experimentgl1-14 for rect-

The Saffman-Taylor viscous fingering instabilitjl]
arises when two viscous fluids move in the narrow gap be
tween two flat parallel plate@ele-Shaw cejl The initially
unperturbed fluid-fluid interface can be destabilized by eithe
pressure gradientssiscosity driven or by gravity (density

During the last few years there has been much interest in
the morphological instability in rotating Hele-Shaw cell, ex-
ploring a great variety of issues both theoreticdllyp—24
1< _ and experimentally16,21,25,26 On the analytical side, re-
angular geometry flow indicate that fingers may undergo 2earchers have performed linda,16 and weakly nonlin-

type of tip—splitt?ng instapility, ot onlylin t_he late stages of ear[17] stability analyses of the problem for large values of
mtgrface evolution and '.f surfaC(_e tension is gxtremely smaIIA_ Other groups have studied particular families of exact
or if the speed of flow is too high. Interestingly, the most

. . . solutions for rotating dropgl8,19 and fluid annulu$20]. In
important and usual morphological features in the rectangus; g dropEL8,19 $20]

I b v d ived in t £ two di addition, intensive numerical simulations have been recently
ar case can be properly described in terms ot two Imenémployed to examine the low-viscosity contrast lirftl]
sionless parameters: the viscosity contragtdimensionless

. > b - . . and the case in which the fluids involved are miscifrieg-
viscosity differencgand the effective surface tension coeffi- ligible surface tension[22]. Furthermore, the flow behavior
cient B which is a measure of capillary forces relative to '

h | ; in th bl Whigen| . of ferrofluid droplets in rotating cells subjected to external
other relevant forces In the problem. plays an im- magnetic fields has been studied by linear stability analysis

[23] and numerical simulation24]. Regarding experimental
investigations, the pioneering work of Ortin and co-workers
*Email address: jme@df.ufpe.br has been providing a series of very interesting results in ro-
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tating cells, involving both highf16] and low-[21] viscosity 2~ Q
contrast flows of drops, and the radial displacement of a v
rotating fluid annulus, in stablg25] and unstablg26] re-
gimes.
One common feature of Refgl5-249 is that the interfa-

cial patterns obtained in rotating cells are markedly different
from those observed in the usual Saffman-Taylor problem in
radial geometry. Specifically, it has been found that rotating
patterns are not unstable against tip splitting, but reveal fin-
gers that stretch and may compete. In this sense, the rotating
patterns are indeed more closely related to the structures ob-
tained in rectangular geometry. Experiments in the tAgh-
and highe limit [16], whereo is the surface tension, have
shown the development of fingering structures in which a FIG. 1. Schematic representation of a rotating Hele-Shaw
central initial drop throws out attached droplets, which them-cell.
selves form new droplets and fingers. An evident dynamic
competition process among inward fingers of different sizegjicted and better appreciated by our analytical mode-
is detected. _ _ coupling approach. At second order we describe a finger

~On the other hand, recent experiments and numer'Caéompetition mechanism and use it to identify the specific
simulations in the lowA limit and for very low values otr |} played byA, B, andb in rotating Hele-Shaw flows.
[21] (typically one order of magnitude smaller than the onecomparison of our main results with other recent theoretical

used in Ref[16]) show that nearly no competition is found. 5nq experimental studies on rotating cells is also performed.
These rotating cell results seem to indicate that, similarly tqy,r conclusions are summarized in Sec. V.

what happens in rectangular geomefalso plays a crucial

role in radial geometry. Another interesting finding of Ref.

[21] is that, in addition to viscosity contrast and surface ten- Il. WEAKLY NONLINEAR APPROACH

sion, the gap spacing also plays a measurable role in the

linear regime. This introduces a third relevant dimensionless Consider a Hele-Shaw cell of gap spacingontaining

parameter into the problem, defined by the ratidb@ind the  two immiscible, incompressible, viscous fluigsee Fig. 1

initial droplet radius. In Ref[21] the gap spacing parameter Denote the densities and viscosities of the inner and outer

is introduced through a modification of the Young-Laplacefluids, respectively, ap;, 7, and p,, 7,. We focus on the

pressure jump boundary condition. centrifugally induced motion wherp,>p,, but allow the
Despite the fact that linear stability results, experimentsnner fluid to be either more or less viscous than the outer

and numerical findings of Ref§16,21] are related to a spe- fluid. The cell rotates with constant angular velodity and

cific range of values for viscosity contrast and surface tenthere exists a surface tensienbetween the fluids. We de-

sion (higherA and o in Ref.[16] and lowerA ando in Ref.  scribe the perturbed interface &S 6,t)=R+{(6,t), whereR

[21]), there is a good indication that the parame#&rB, and s the radius of the initially circular interface, and

b are important to characterize pattern morphology and fin-

ger competition processes in rotating Hele-Shaw cells. How- .

ever, a systematic analytical study including the combined _ .

influence of all these paramet&esach of them varying in the g = n_E_"x {n(expling) @)

entire range of their allowed valueat the onset ofonlinear -

effects still needs to be addressed in the literature. This is

exactly the purpose of this work. represents the net interface perturbation with Fourier ampli-
The rest of the paper is organized as follows: In Sec. Il wdudes {,(t) and discrete azimuthal wave numbers

formulate our theoretical approach and present an analyticalO, +1,%2,... .

study of the rotating Hele-Shaw problem, focusing on early For the effectively two-dimensional geometry of the Hele-

nonlinear stages of the dynamics. The effects of normafhaw cell, the flow velocity; ==V ¢;, where ¢; represents

stresses at the interface are explicitly taken into account. Wehe velocity potential in fluidg=1,2. Theequation of mo-

perform a Fourier decomposition of the interface shape antion of the interface is given by Darcy’s laji,7], properly

apply a perturbative weakly nonlinear analysis to deriveaugmented by a centrifugally driven tefi23,24

coupled, nonlinear, ordinary differential equations governing

the time evolution of Fourier amplitudes. Section Il dis- byt & by b b2 1

cusses our linear stability analysis. Linear results are useful A( 2 1) +< 2 1) = |:—(pl—p2)9,2|’2

and instructive, but do not allow one to make any specific 12(m + 1) L 2

2

predictions about the finger competition dynamics. Actually,

we have found that the allegedly important role played by =(p1— Dz)], (2
the viscosity contrast cannot be extracted or detected at lin-

ear stages. In Sec. IV we show that some important features

of the finger competition phenomenon can indeed be prewhere the dimensionless parameter
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A= (3 pl‘pzzaK‘25[771

2 2
= T _ &_4’2} _ (6)
Mt m

a2 22

Note that the second term on the right-hand side of (By.
takes into account stresses originated from normal velocity
gradients which are nonzero and of relevance not only to
rotating cells, but to any radially symmetric Hele-Shaw flow.
éEquation(6) expresses that, if viscous stresses are accounted,
the curvature term is balanced not only by pressure differ-
ence, but also by the normal components of the viscous
stress. The parameté [6=1 (6=0) if normal stresses are
(not) consideretlis used to keep track of the contributions
ming from the new term in Eq6) in our mode-coupling

is the viscosity contrastp; represents the hydrodynamic
pressure, and denotes the radial distance from the axis of
rotation.

At this point we stress the fact that, differently from pre-
vious theoretical and experimental investigations of the rol
of A to finger competition, which focus on the highi-6] and
low- [21] negativeviscosity contrast limitgdisplacing fluid
is more viscoug our results are applicable for all allowed
values of viscosity contrast <AA<1. This is very conve-
nient in the sense that we can compare our analytical resul

with existing experimental and simulational studies for thedeScription. As we will verify below, the addition of extra
low and highA<0 case, and also make important predic_stresses in Eq6) introduces a pertinent dependence on the

tions related to other relevant values of the parameter, ind2P Spacing at both linear and weakly nonlinear stiges.
cluding the A>0 case(where displacing fluid is the less (N=1D]. . .

viscous ong Observe that whem>0 the morphological We would like to emphasize that the pressure boundary
instability can be driven by both viscosity and density differ- condition(6) is a simplified limit of much more complicated
ences, which could possibly result in the rising of new andcireumstances present in the fu_II three-dlmens[on_al problem
interesting patterns at fully advanced nonlinear stages. Evelf/:28:30,31 Rigorously speaking, the fluid-fluid interface
though flow with A>0 is a rather common situatiofor 'S actually two dlmenS|onaI,' so that the contrlbut'lon to the
instance, when water displaces fll), it has not yet been Pressure difference proportional to surface tension is gov-
studied in the rotating Hele-Shaw flows. erned by the mean curvatugéhe average of the two princi-

In contrast to the great majority of works in Hele-Shaw P2l curvaturesof the interface om=r;+«,. One principal
flows. we follow Alvarez-Lacalle. Ortin. and Casademuntcurvature("ﬁ is associated with the interface profile in the
and consider the equilibrium condition on the normal com-direction perpendicular to the cell plates, and it is of order
ponent of the local viscous stress tenspacross the fluid- 1/b with a specific value set by interface contact angles. The
fluid interface[21,27,28: remaining principal curvaturéx;) is parallel to the Hele-
Shaw cell plates.

From the remarks made in the previous paragraph, we
point out that, in principle, even if normal stresses ao¢

— . considered in the generalized Young-Laplace pressure jump
The term at the right-hand side of Hg) represents the usual condition Eq.(6) (or, equivalently, if5=0), there would stil

contribution related to surface tension and interfacial curvas . -
) . . be an influence of the plate separatioriginated from the

ture x [1,7,21], with n denoting the unit normal vector at the dicul I hi buti

interface. As in Ref[21] we consider the interface as a one- perpendicular curvaturex,. Actually, this contribution

dimensional line and take as parallel to the Hele-Shaw cell would be a d_omlnant term since, Is much larger thar,.
However, typically one finds that, is nearly constantcon-

plates. g )

. . stant contact ang)d¢27,28. Therefore, despite its magnitude
The stress tensor appearing at the left-hand side of4q. . o

. . .the perpendicular curvature does not significantly affect the

is a second-rank tensor and for any of the fluids can be writ- ~ "~ . .

ten as[29] motion in Hele-Shaw cell, because its gradient is nearly zero.

This last point was also discussed by Tryggvason and Aref

n-(m-m) N=0k. (4)

[2] in the context of their vortex sheet formulation of the
T =—PSi + 77[% + %} (5) Hele-Shaw problem: it is found that vorticity generated at the
' ! N K fluid-fluid interface depends only on derivatives of the pres-

sure. So the addition of a constant-pressure termw ) at

where 8y denotes the Kronecker delta function andepre-  the interface has no net effect on the dynamics.
sents theith component of the fluid velocity vector. In Eq.  Of course, if the perpendicular curvature is not constant, it
(5) the elements with+# k involve velocity gradients and are may well reintroduce complicated three-dimensional effects
related to internal friction in the fluidviscous effects On  such as wetting- and velocity-dependédynamig contact
the other hand, the diagonal elements of the tensor are prangles into the problerj27,28,30,31 As discussed in more
portional to the pressure and velocity independent. detail in Ref.[21] the inclusion of these complex three-

To conclude our derivation of a modified Young-Laplace dimensional effects can be avoided in rotating Hele-Shaw
pressure jump interfacial boundary condition, first we rewritecells if a prewetting film is generated in the glass plates
Eq. (5) for each fluid(j=1,2) using polar coordinates , 6). before the experiments are performed. Under such circum-
Then we substitute the resulting expressions into the equilibstances the boundary condition shown in Ej.is perfectly
rium condition, Eq.(4), and evaluate it at the interface. Fi- valid, and an excellent agreement between experiments and
nally, in the latter we express the fluid velocities in terms ofnumerical simulations is obtaind@1]. So in this paper we
the velocity potentials to obtain can say that the influence of gap spacingn the evolution
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of the system comes from the inclusion of the additionalcoupling termsF(n,n’) and G(n,n’) on b and A. Such a
terms in Eq.(6) related to normal viscous stresses at thedependence, which within our approach does not exigt if

moving interface.

=0, is of importance to an accurate description of the finger

We proceed by adapting a weakly nonlinear approacttompetition dynamics in rotating Hele-Shaw cells.

originally developed to study flow imotionlessHele-Shaw

cell [32,33 to the current rotating cell problem. First, we
define Fourier expansions for the velocity potentials, which

obey Laplace’s equatioWZde:O. Then, we expresg; in
terms of the perturbation amplitudés by considering the
kinematic boundary condition- V ¢»;=n-V ¢,, which refers

Ill. LINEAR STABILITY ANALYSIS

Although at the level of linear analysis we do not expect
to detect or rigorously predict important nonlinear effects
such as finger competition, linear stability analysis may still

to the continuity of the normal velocity across the interface provide useful information. Some aspects related to the lin-
Substituting these relations and the modified pressure jumgar stage in the lowA<<O limit and for very small surface

condition, Eg.(6), into Eq. (2) and Fourier transforming
yields thedimensionlessnode-coupling equatio(for n# 0)

L=NMG+ > [F(N) Lo + G0N G G ]

n’'#0
(7)
where
_ Al e
k(n)—J(n)[l B(n“-1)] (8)
denotes the linear growth rate with
{ |n|<|n|+A)b2]
Jin) = 1+6T (9
and
LB { oy }
F(n,n)—J(n){2 B| 1 2(3n +n) |, (10)
G(n,n’)=%{A[l—sgr(nn’)]—ﬁ
b2
+ 5€[A[1 -n?sgn(nn’) +n'?]
—|n|[1+sgr(nn’)]+3|n’|]} (11)

tensiono have been already discussed in Réfl]: it has
been found that the use of a modified Young-Laplace pres-
sure boundary conditiofsimilar to our Eq.(6)] introduces a
dependence of the linear growth rate on gap spacing. More
over, it has been deduced thahif- 1/b> A the gap spacing
corrections would be independent of the viscosity contrast.
The validity of these suggestive linear findings to weakly and
fully nonlinear stages of the flow and its applicability to all
allowed values ofA andB have not been further investigated
analytically in Ref.[21], but instead have been supported by
their experiments and intensive numerical simulations in the
low A<0 ando limit.

Here we use our growth rate E@) to gain further insight
into the influence of the parameteks B, andb at the linear
stage of pattern evolution. The reasons for performing such a
linear stability analysis are twofold: first, it allows one to
access and examine some important features of the patterns
already at the linear level. Second, it indicates the necessity
of performing a weakly nonlinear analysis of the system, due
the the lack of information relating the relevant physical pa-
rameters to finger competition events.

Figure 2 plotsk(n) as a function of mode number for
three different values of the surface tension paran@téa)

104, (b) 4.0x10% and(c) 1.6x10°3. The color shading
refers to the following values db: 1.5x 1072 (black), 3.5
X 1072 (dark gray, and 4.5< 1072 (light gray). By inspecting
Fig. 2, we can examine how the gap spadingfluences the
linear growth rate: for a given value &, increasing leads
to a decreased growth rate of the fastest growing mmge

reprgsenting second—orde'r mode-cogpling terms. The S9Rdbtained by settingd\(n)/dn=0] and shiftsn,,,, toward
function equals 1 according to the sign of its argument. In, o values of azimuthal wave numbers. Si deter-

Eq. (7) lengths are rescaled Wy and time byR/U, where
U=[b?R(p;—p,)Q?]/[12(5,+ 5,)] is a characteristic veloc-
ity. Here we define the surface tension parameter

(o

= 2
° RO%(p1 - po) (12

mines the typical number of fingers formed at the onset of
the instability, this means that small gaps result in patterns
with a larger number of fingers. This is an important conse-
quence of the inclusion of normal stresses in E). We
point out that, due to a small mistake in their linear stability
calculation, the authors of Reff21] erroneously concluded

as the ratio of capillary to centrifugal forces. From now on,exactly the opposite: larger gap spacings leading to larger
we work with the dimensionless version of the equationswave numbers. However, our current results do agree with
After appropriate reintroduction of dimensions, it can betheir own experimental and numerical findingl].

shown that our linear growth rate expressi8nagrees with
the equivalent formula of Alvarez-Lacalkt al. [21]. Notice

It is also noticed from Fig. 2 that the selectivity of wave
numbers induced by changes mis more relevant for

that Eq.(7) is conveniently written in terms of the three smaller values of the surface tension paramd&erbeing

relevant dimensionless parameters of the problen, and

hardly observed for sufficiently largB [see Fig. 2Zc)]. A

b. As mentioned earlier, note that the extra stress parametetearer illustration of the latter is depicted in Fig. 3, which

6=1, originated from Eq(6), introduces an explicit depen-

dence of the linear growth rate(n) and also of the mode-

plotsn,,.,as a function ob for increasingly larger values of
B, using the same physical parameters as those used in Fig.
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1
nc—\/1+g, (13)

namely, the maximum wave number for whigkn) is still
positive, depends only oB and for a givenB is evidently
not influenced by changes in gap spacing.

An additional noteworthy point we have verified about the
linear stability features illustrated by Figs. 2 and 3, which
assume specific values of viscosity contrast and extra stress
paramete(respectivelyA=-1 andé=1), is the fact that the
linear scenario is not qualitatively modified if any other val-
ues of ~I=A=<1 are used. For instance, considering the data
shown in Figs. 2 and 3, if we takk=1 instead ofA=-1, the
new values oh,,,would be very modestly smaller than the
original ones(the largest difference being0.3% —0.4%, if

\ \ b=4.5x 107). This indicates that, at the linear level, the
20 40 60 80 100 influence ofA on the dynamics isninor, as opposed to the
n important changes induced by the paramelbeandB. Inci-
dentally, recall thatA does not play any role at the linear
level if 6=0[see Eq(9)]. So, despite the inclusion of normal
stresseg6=1) in the modified pressure boundary condition

33

25

An)

15

FIG. 2. Linear growth rate\(n) as a function ofn, for A=-1,
5=1, and three different values & (a) 1074, (b) 4.0x 1074, and

(c) 1.6x 1073, The color labeling refers to three values of gap spac- : . :
ings b: 1.5x 10°2 (black, 3.5x 102 (dark gray, and 4.5< 1072 Eq. (6), the viscosity contrast does not necessarily emerge as

(light gray). To better guide the eye the maxima of the curves are® K€Y parameter at purely linear stages of interfacial evolu-
explicitly indicated by small dots. tion. However, there is good experimental and numerical evi-

dence thatA plays amajor role in determining pattern be-
, i - i i havior (particularly, with respect to finger competitipat
2. By increasingb in Fig. 3 the typical numbfr of fingers highly nonlinear stages of the flow in both rectangyss]
drops by approximately 16 units (a) for B=10"% 3 unitsin 54 rotating Hele-Shaw cel[@1]
4 . . _ .
(b) fo; 4.0x10% and roughly by 1 unit inc) for B=1.6 Based on our previous discussion, it is clear that one must
X107 Itis worth mentioning that i6=0 the values Ofi, o beyond linear analysis in order to investigate thoroughly
andA (Npa wou_ld be overestimated and their dependence o, B, b, and particularlyA influence important morpho-
b completely disappears. _ logical features of the evolving interface. Section IV demon-
Interestingly, despite the evident dependence of the fastegfrates the usefulness of our weakly nonlinear approach in

growing moden,, on bothb andB as indicated in Figs. 2 gpalytically elucidating key aspects related to the finger com-
and 3, it can be verified that the band of unstable mOdespetition dynamics.

characterized by the critical mode number
IV. FINGER COMPETITION DYNAMICS

. In this section we use the mode-coupling, EQ, to gain
50 . ( a) analytical insight into finger competition dynamics in rotat-
ing flows and to examine how it is affected by the action of
. A, B, andb. We emphasize that finger competition is an
¢ . intrinsically nonlinear effect and could not be properly ad-
40 * . dressed by purely linear stability analysis. Consequently, we
concentrate our attention primarily on the weakly nonlinear
terms in Eq.(7).
30 (b) Within our mode-coupling approach finger competition is
described by the influence of a fundamental maden the
* . growth of its subharmonic mode/2 [32,33. To simplify
our discussion we rewrite the net perturbatipim terms of
20 cosingla,=¢,+{_,] and sindb,=i({,— ¢_,) ] modes. Without
(C) loss of generality we may choose the phase of the fundamen-
A S tal mode so thaa,> 0 andb,=0. From Eq(7) we obtain the
equations of motion for the subharmonic mode,
0.015 0.025 0.035 0.045

b ay2 = {N(n/2) + C(n)an} ayy, (14)

n max

FIG. 3. Fastest growing mod®,,, as a function ofb, for A= b =IN(n/2) - C(n)a.t b 15
-1, =1, and three different values & (a) 1074, (b) 4.0x 1074, w2 = IM/2) = C(Mant bz, (15)
and(c) 1.6x 1073, where the function
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750 b=15x]10"2
(dashed)
b=35x]10"2
(solid)
250 100
=
= 0 Lo l
250 (a)B=2.0x 107 N ”I”IIIIII
— h ' j
(h)B=50x 104 ok #”%"Z"
(c ) B=20x10-3 0.002 ’Ill%{,’gg'{?g' !

7 Z 52
A
4

0.5 1

FIG. 4. C(n) as given by Eq(16) as a function of the viscosity
contrastA, for three different values of the surface tension coeffi-
cient B, and two distinct gap spacinds Note that hidden in the
solid (light gray) line labeled(c) there are in fact two linegan
indistinguishable dashed line lies hidden

FIG. 5. Variation of the difference functidfp;¢s as given by Eq.
(17) in terms of the viscosity contragt and the surface tension
coefficientB.

ones utilized in Fig. 4, but plots the difference function, de-

C(n):}|:|:(_n'n) +)\(n/2)G(E,—D>} (16) fined as
2 22 2 2
Foitt = [C(Mp=b, = CN=b, 17

determines finger competition. The wayn) is connected to  where b,=1.5x 102 (dashed lines in Fig. ¥and b,=3.5
finger competition can be inferred simply by inspecting Eqs.x 1072 (solid lines in Fig. 4. So the functiorFp;s; expresses
(14) and (15). We verify thatC(n) >0 increases the growth the absolute value of the difference between the finger com-
of the cosine subharmoni,,, while inhibiting growth of its  petition (dashed and soljdines C(n) plotted in Fig. 4 for
sine subharmoniby,. The result is an increased variability two distinct values of gap spacing.

among the lengths of fingers of fluid 1 penetrating into fluid  The most evident feature of Fig. 4 is the fact that if the
2. This effect describes finger competition. Sine moblgs  viscosity contrast tends to zero, the competition function
would vary the lengths of fingers of fluid 2 penetrating into C(n) also tends to zero, regardless of the value of eifher
fluid 1, but it is clear from Eq(15) that their growth is  p, |n other words, our results indicate the absence of dy-
suppressed whe@(n) > 0. Reversing the sign &(n) would  namic competition between fingers if the two fluids present
exactly reverse these conclusions, such that mdugs comparable viscosities. Remarkably, this important effect,
would be favored over modes,,. Regardless of its sign, the which could not be accessed by purely linear analysss,
function C(n) measures the strength of the competition suchyetected already at the lowest nonlinear order.

that increasingly larger values @f(n)>0 [C(n) <0] lead to The regulatory behavior ok with respect to finger com-
enhanced competition of outwafohward] fingers. petition is reinforced by Fig. 5 where it can be seen Haf;

Our study of the finger competition dynamics examinestends quite rapidly to zero when the viscosity contrast van-
the weakly nonlinear results depicted in Figs. 4 and 5, takingshes, even in that region of the graph in which the difference
6=1. Figure 4 plotsC(n) given by Eq.(16) as a function of between the behaviors is strongégsmaller values ofB).
viscosity contrasA (with —1<A<1) for three different val- Therefore, simililarly to what have been found by numerical
ues of the surface tension parameBera) 2.0x 10 (black  simulations[2,3] and experiment§,5] in rectangular geom-
lines), (b) 5.0x10* (dark gray liney and (c) 2.0x103 etry, our analytical findings show thatalso plays a crucial
(light gray ling). The solid(dashegllines describe the behav- role in the radial geometry by controlling finger competition
ior of C(n) for gap spacingp=3.5xX1072 (1.5X107%). To  behavior. This is in perfect agreement with the recent rotat-
observe growth of the fundamental mode and also to alloving cell experiments performed in the low<0 and low
growth of its subharmonic, we carry out our analysis considsurface tension limif21].
ering thatn=n. [see Eq(13)]. Note that Fig. 4 conveniently We continue our discussion by concentrating on the most
illustrates in a single diagram the way the parameferB,  frequent situation explored in the literature so far or the case
andb affect finger competition in rotating cells. in which A<<O (inner fluid is more viscoys By observing

Complementary information can be obtained by examinFig. 4 we see that ifA is negative,C(n) <0, indicating in-
ing Fig. 5 which uses the same physical parameters as thereased competition among inward fingers for increasingly
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larger values ofA. Simultaneously, the competition among that the discrepancies between the theoretical analysis for
outward fingers would be suppressed. These findings are iinger competition with6=0 and the real experiments are
accordance with what is observed in rotating cell experiincreasingly larger for smaller values of the surface tension
ments in both highj16] and low[21] A<<O limits. parameteB. Finally, we point out that if5=0 the effect of

At this point, we turn our attention to the role playedBy the viscosity contrast on the competition of the fingered
when A< 0. Notice that for a given value df, the inclina-  structures would be exaggerated, mainly in the HigHimit.
tion of the C(n) lines in Fig. 4 is controlled by the dimen- These last remarks reinforce the necessity of introducing nor-
sionless surface tensid) so that competition decreas@s-  mal stresses into the general theoretical framework of the
creasep for larger (smalley values ofB. Even though, for problem in order to obtain a better and more reliable under-
fixed B, A determines finger competition, variationsBmay  standing of the finger competition dynamics in rotating Hele-
lead to significant changes in the intensity of the competi-Shaw cells.
tion. In particular, note that iB is sufficiently large,C(n)
—0 no matter the value oA. Conversely, ifB is too small
(nearly zero-surface-tension-limitcompetition among in-

ward fingers is supposed to be very intense and the formation One of the main reasons that motivated us to develop the
of topological singularities(droplet fission and breakyip current weakly nonlinear study was the possibility to extract
could be expected. Singularity formation has been experianalytical information about the rotating Hele-Shaw prob-
mentally verified in Ref[21], where finger pinch-off and |em, which otherwise could only be acquired via meticulous
droplet emission are observed. experiments[16,21 or sophisticated numerical methods
Now, we analyze the role of the gap spacmd=rom Fig.  [21]. As a result of our mode-coupling approach several fea-
4 we notice thaC(n) is indeedo dependent, so that for fixed tures of the patterns formed in rotating cells, especially those
B this dependence is strongeveakey for smaller(largep  related to finger competition dynamics, can now be ex-
values ofb, confirming the experimental findings of Refs. plained and predicted analytically. Our analysis explicitly in-
[16,27. Notice also that this dependence is more evident fodicates that the link between the finger competition dynamics
larger values ofA<<0. Finally, note that ifB is allowed to  and the parameters, B, and b occurs through enhanced
vary, the sensitivity olC(n) with respect tdb is stronger for  growth of subharmonic perturbations. We stress that the fin-
smallerB, being completely irrelevant for sufficiently large ger competition mechanism we propose is consistent with
values of the dimensionless surface tension. This fact can bethers already studied in the literatUies,21].
verified in Fig. 4 by noticing that foB=2.0x 102 [labeled Our mode-coupling approach allows one to study finger
by (c)] the solid and dashed lines simply overlap. This lastcompetition considering a rich space of physical parameters,
feature can be even more clearly observed in Fig. 5 wher@ the sense that it incorporates the combined role of all three
the difference function goes quickly to zeroBss increased, relevant parameters for the problem: namely, the viscosity
so that, after some sufficiently large value of the surfacecontrastA, the surface tension coefficieBf and the dimen-
tension parameteB, changingb results in no practical dif- sionless gap spacing In agreement with previous experi-
ferences regarding finger competition behavior. Thereforemental and numerical investigations of the problgi6,21],
we deduce that the effect of normal stresses is not relevant e have concluded th#t has indeed a key role in determin-
the largeB limit. ing finger competition, so that competition virtually disap-
We proceed by commenting on the ca#se O (inner fluid  pears wherA— 0. On the other hand, we have shown tBat
is less viscous In Fig. 4 we see that by reversing the sign of andb can also be of considerable importance for an accurate
A from negative to positive there is in fact just one signifi- description of the problem. For instance, we have deduced
cant change: iR>0, the competition functio@(n) becomes  that for sufficiently largeB, competition vanishes regardless
positive, indicating that the growth of the cosine subhar-of the particular values oA andb. Likewise, we have veri-
monic a,, is now favored[see Eq.(14)]. This causes in- fied explicitly thatb has a stronger influence on finger com-
creased competition amongutward fingers. Interestingly, petition wheneveB is small andA is large.
concerning the action @ andb, the rest of the conclusions Moreover, we have been able to extend our predictions
reached above for the cas8e<0 apparently remain valid for beyond the universe of parameters normally explored by ex-
positive viscosity contrast. This is also evident from Fig. 5isting experiments and simulatiof$5-2§. Concerning the
which depicts & s function that is symmetric under sign values of the viscosity contrast, while the majority of works
reversal ofA. It is also easy to see that competition dynamicsin rotating Hele-Shaw cells focus on very low and very high
is more (and equally sensitive to changes ih, for larger  A<O0 limits, we can address its whole range of validity -1
values ofA, no matter if it is positive or negative. <A=<1. This is also true with respect to the parametrs
We close this section by making a few remarks about ouandb. The welcome flexibility offered by our analytical ap-
mode-coupling description of the finger competition behav-proach is very advantageous, since the weakly nonlinear
ior if extra stresses originated from normal velocity gradientsmethod provides an accurate approximation of the dynamics,
in Eq. (6) arenottaken into account. As expected 0, we  being nonperturbative with respect to the relevant physical
have verified that the competition dynamics would be com-parameters of the problem. In addition, it permits one to
pletely insensitive to changes in the gap spacimgOf  explore physical situations not yet addressed by in the litera-
course, this would not be in agreement with recent experiture. For example, iR>0, we have made a rather specific
mental studies of the systefi6,21. We also have found prediction: increased competition ofuitward fingers would

V. CONCLUSIONS
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occur for increasingly larger values pbsitiveviscosity con-
trast. Furthermore, we have predicted thatAor 0 all other

PHYSICAL REVIEW E 70, 066308(2004

dynamics systems, in particular those involving pattern for-

mation in confined fluid flow under variable gap spacing

morphological features related to competition should beconditions occurring in liting Hele-Shaw cel|84-3§, and
similar to those obtained in the< 0 case. Itis worth noting  adhesion-related problems with Newtonian, non-Newtonian,
that some of our specific predictions—mainly those con-and magnetic fluid§37—4Q.

nected to the situation in whicth>0—still need to be
checked experimentally imotating cells. We hope experi-
mentalists will be willing to test our weakly nonlinear results
for positive A.

We conclude by pointing out that the main theoretical
considerations employed in this wornwveakly nonlinear
mode-coupling theory including normal viscous stresses
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