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We report analytical results for the development of interfacial instabilities in rotating Hele-Shaw cells. We
execute a mode-coupling approach to the problem and examine the morphological features of the fluid-fluid
interface at the onset of nonlinear effects. The impact of normal stresses is accounted for through a modified
pressure jump boundary condition. A differential equation describing the early nonlinear evolution of the
interface is derived, being conveniently written in terms of three relevant dimensionless parameters: viscosity
contrastA, surface tensionB, and gap spacingb. We focus our study on the influence of these parameters on
finger competition dynamics. It is deduced that the link between finger competition andA, B, andb can be
revealed by a mechanism based on the enhanced growth of subharmonic perturbations. Our results show good
agreement with existing experimental and numerical investigations of the problem both in low and highA
,0 limits. In particular, it is found that the condition of vanishingA suppresses the dynamic competition
between fingers, regardless of the value ofB and b. Moreover, our study enables one to extract analytical
information about the problem by exploring the whole range of allowed values forA, B, andb. Specifically, it
is verified that pattern morphology is significantly modified when the viscosity contrast −1øAø1 varies:
increasingly larger values ofA.0 sA,0d lead to enhanced competition of outward(inward) fingers. Within
this context the role ofB andb in determining different finger competition behaviors is also discussed.
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I. INTRODUCTION

The Saffman-Taylor viscous fingering instability[1]
arises when two viscous fluids move in the narrow gap be-
tween two flat parallel plates(Hele-Shaw cell). The initially
unperturbed fluid-fluid interface can be destabilized by either
pressure gradients(viscosity driven) or by gravity (density
driven). Traditionally, experiments and theory focus on two
basic Hele-Shaw flow geometries: rectangular[2–5] and ra-
dial [6,7]. In rectangular geometry the less viscous fluid is
pumped against the more viscous one along the direction of
the flow. In the radial case injection is performed through an
inlet located on the upper plate. In both situations, the insta-
bility can lead to the formation of fingering structures, typi-
cally characterized by finger tip-splitting and/or finger com-
petition phenomena.

In contrast to radial geometry flow, which exhibits both
splitting and competition behaviors, flow in rectangular ge-
ometry normally displays only finger competition[2–5]. Nu-
merical simulations[8–10] and experiments[11–14] for rect-
angular geometry flow indicate that fingers may undergo a
type of tip-splitting instability, but only in the late stages of
interface evolution and if surface tension is extremely small
or if the speed of flow is too high. Interestingly, the most
important and usual morphological features in the rectangu-
lar case can be properly described in terms of two dimen-
sionless parameters: the viscosity contrastA (dimensionless
viscosity difference) and the effective surface tension coeffi-
cient B which is a measure of capillary forces relative to
other relevant forces in the problem. WhileB plays an im-

portant role in mechanisms of steady-state selection,A acts
decisively in the finger competition dynamics ifA=0 sA
Þ0d competition is suppressed(favored), where finger com-
petition is associated with length variability among the fin-
gered structures.

The question arises as to whether the parametersA andB
also play a relevant role in radial geometry. Possible answers
to this question can be conveniently offered by an interesting
variation of themotionlessHele-Shaw cell setup: therotating
Hele-Shaw problem[15,16]. In the latter the cell is rotated
around an axis perpendicular to the plane of the flow, so that
the interfacial instability is driven by centrifugal forces act-
ing on the interface separating fluids of different densities.
To some extent the rotating cell problem can be seen as the
radial counterpart of the gravity-driven situation in rectangu-
lar cells [2–5].

During the last few years there has been much interest in
the morphological instability in rotating Hele-Shaw cell, ex-
ploring a great variety of issues both theoretically[15–24]
and experimentally[16,21,25,26]. On the analytical side, re-
searchers have performed linear[15,16] and weakly nonlin-
ear[17] stability analyses of the problem for large values of
A. Other groups have studied particular families of exact
solutions for rotating drops[18,19] and fluid annulus[20]. In
addition, intensive numerical simulations have been recently
employed to examine the low-viscosity contrast limit[21]
and the case in which the fluids involved are miscible(neg-
ligible surface tension) [22]. Furthermore, the flow behavior
of ferrofluid droplets in rotating cells subjected to external
magnetic fields has been studied by linear stability analysis
[23] and numerical simulations[24]. Regarding experimental
investigations, the pioneering work of Ortín and co-workers
has been providing a series of very interesting results in ro-*Email address: jme@df.ufpe.br
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tating cells, involving both high-[16] and low-[21] viscosity
contrast flows of drops, and the radial displacement of a
rotating fluid annulus, in stable[25] and unstable[26] re-
gimes.

One common feature of Refs.[15–26] is that the interfa-
cial patterns obtained in rotating cells are markedly different
from those observed in the usual Saffman-Taylor problem in
radial geometry. Specifically, it has been found that rotating
patterns are not unstable against tip splitting, but reveal fin-
gers that stretch and may compete. In this sense, the rotating
patterns are indeed more closely related to the structures ob-
tained in rectangular geometry. Experiments in the high-A
and high-s limit [16], wheres is the surface tension, have
shown the development of fingering structures in which a
central initial drop throws out attached droplets, which them-
selves form new droplets and fingers. An evident dynamic
competition process among inward fingers of different sizes
is detected.

On the other hand, recent experiments and numerical
simulations in the low-A limit and for very low values ofs
[21] (typically one order of magnitude smaller than the one
used in Ref.[16]) show that nearly no competition is found.
These rotating cell results seem to indicate that, similarly to
what happens in rectangular geometry,A also plays a crucial
role in radial geometry. Another interesting finding of Ref.
[21] is that, in addition to viscosity contrast and surface ten-
sion, the gap spacingb also plays a measurable role in the
linear regime. This introduces a third relevant dimensionless
parameter into the problem, defined by the ratio ofb and the
initial droplet radius. In Ref.[21] the gap spacing parameter
is introduced through a modification of the Young-Laplace
pressure jump boundary condition.

Despite the fact that linear stability results, experiments
and numerical findings of Refs.[16,21] are related to a spe-
cific range of values for viscosity contrast and surface ten-
sion (higherA ands in Ref. [16] and lowerA ands in Ref.
[21]), there is a good indication that the parametersA, B, and
b are important to characterize pattern morphology and fin-
ger competition processes in rotating Hele-Shaw cells. How-
ever, a systematic analytical study including the combined
influence of all these parameters(each of them varying in the
entire range of their allowed values) at the onset ofnonlinear
effects still needs to be addressed in the literature. This is
exactly the purpose of this work.

The rest of the paper is organized as follows: In Sec. II we
formulate our theoretical approach and present an analytical
study of the rotating Hele-Shaw problem, focusing on early
nonlinear stages of the dynamics. The effects of normal
stresses at the interface are explicitly taken into account. We
perform a Fourier decomposition of the interface shape and
apply a perturbative weakly nonlinear analysis to derive
coupled, nonlinear, ordinary differential equations governing
the time evolution of Fourier amplitudes. Section III dis-
cusses our linear stability analysis. Linear results are useful
and instructive, but do not allow one to make any specific
predictions about the finger competition dynamics. Actually,
we have found that the allegedly important role played by
the viscosity contrast cannot be extracted or detected at lin-
ear stages. In Sec. IV we show that some important features
of the finger competition phenomenon can indeed be pre-

dicted and better appreciated by our analytical mode-
coupling approach. At second order we describe a finger
competition mechanism and use it to identify the specific
role played byA, B, and b in rotating Hele-Shaw flows.
Comparison of our main results with other recent theoretical
and experimental studies on rotating cells is also performed.
Our conclusions are summarized in Sec. V.

II. WEAKLY NONLINEAR APPROACH

Consider a Hele-Shaw cell of gap spacingb containing
two immiscible, incompressible, viscous fluids(see Fig. 1).
Denote the densities and viscosities of the inner and outer
fluids, respectively, asr1, h1 and r2, h2. We focus on the
centrifugally induced motion wherer1.r2, but allow the
inner fluid to be either more or less viscous than the outer
fluid. The cell rotates with constant angular velocityV, and
there exists a surface tensions between the fluids. We de-
scribe the perturbed interface asRsu ,td=R+zsu ,td, whereR
is the radius of the initially circular interface, and

zsu,td = o
n=−`

+`

znstdexpsinud s1d

represents the net interface perturbation with Fourier ampli-
tudes znstd and discrete azimuthal wave numbersn
=0, ±1, ±2, . . . .

For the effectively two-dimensional geometry of the Hele-
Shaw cell, the flow velocityv j =−=f j, wheref j represents
the velocity potential in fluidsj =1,2. Theequation of mo-
tion of the interface is given by Darcy’s law[1,7], properly
augmented by a centrifugally driven term[23,24]

ASf2 + f1

2
D + Sf2 − f1

2
D =

b2

12sh1 + h2dF1

2
sr1 − r2dV2r2

− sp1 − p2dG , s2d

where the dimensionless parameter

FIG. 1. Schematic representation of a rotating Hele-Shaw
cell.
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A =
h2 − h1

h2 + h1
s3d

is the viscosity contrast,pj represents the hydrodynamic
pressure, andr denotes the radial distance from the axis of
rotation.

At this point we stress the fact that, differently from pre-
vious theoretical and experimental investigations of the role
of A to finger competition, which focus on the high-[16] and
low- [21] negative-viscosity contrast limits(displacing fluid
is more viscous), our results are applicable for all allowed
values of viscosity contrast −1øAø1. This is very conve-
nient in the sense that we can compare our analytical results
with existing experimental and simulational studies for the
low and highA,0 case, and also make important predic-
tions related to other relevant values of the parameter, in-
cluding the A.0 case(where displacing fluid is the less
viscous one). Observe that whenA.0 the morphological
instability can be driven by both viscosity and density differ-
ences, which could possibly result in the rising of new and
interesting patterns at fully advanced nonlinear stages. Even
though flow with A.0 is a rather common situation(for
instance, when water displaces oil[1]), it has not yet been
studied in the rotating Hele-Shaw flows.

In contrast to the great majority of works in Hele-Shaw
flows, we follow Alvarez-Lacalle, Ortín, and Casademunt
and consider the equilibrium condition on the normal com-
ponent of the local viscous stress tensort j across the fluid-
fluid interface[21,27,28]:

n · st2 − t1d ·n = sk. s4d

The term at the right-hand side of Eq.(4) represents the usual
contribution related to surface tension and interfacial curva-
turek [1,7,21], with n denoting the unit normal vector at the
interface. As in Ref.[21] we consider the interface as a one-
dimensional line and takek as parallel to the Hele-Shaw cell
plates.

The stress tensor appearing at the left-hand side of Eq.(4)
is a second-rank tensor and for any of the fluids can be writ-
ten as[29]

tik = − pdik + hF ]vi

]xk
+

]vk

]xi
G , s5d

wheredik denotes the Kronecker delta function andvi repre-
sents theith component of the fluid velocity vector. In Eq.
(5) the elements withi Þk involve velocity gradients and are
related to internal friction in the fluid(viscous effects). On
the other hand, the diagonal elements of the tensor are pro-
portional to the pressure and velocity independent.

To conclude our derivation of a modified Young-Laplace
pressure jump interfacial boundary condition, first we rewrite
Eq. (5) for each fluids j =1,2d using polar coordinatessr ,ud.
Then we substitute the resulting expressions into the equilib-
rium condition, Eq.(4), and evaluate it at the interface. Fi-
nally, in the latter we express the fluid velocities in terms of
the velocity potentials to obtain

p1 − p2 = sk − 2dFh1
]2f1

]r2 − h2
]2f2

]r2 G . s6d

Note that the second term on the right-hand side of Eq.(6)
takes into account stresses originated from normal velocity
gradients which are nonzero and of relevance not only to
rotating cells, but to any radially symmetric Hele-Shaw flow.
Equation(6) expresses that, if viscous stresses are accounted,
the curvature term is balanced not only by pressure differ-
ence, but also by the normal components of the viscous
stress. The parameterd [d=1 sd=0d if normal stresses are
(not) considered] is used to keep track of the contributions
coming from the new term in Eq.(6) in our mode-coupling
description. As we will verify below, the addition of extra
stresses in Eq.(6) introduces a pertinent dependence on the
gap spacing at both linear and weakly nonlinear stages[Eqs.
(7)–(11)].

We would like to emphasize that the pressure boundary
condition(6) is a simplified limit of much more complicated
circumstances present in the full three-dimensional problem
[27,28,30,31]. Rigorously speaking, the fluid-fluid interface
is actually two dimensional, so that the contribution to the
pressure difference proportional to surface tension is gov-
erned by the mean curvature(the average of the two princi-
pal curvatures) of the interface ork=ki+k'. One principal
curvaturesk'd is associated with the interface profile in the
direction perpendicular to the cell plates, and it is of order
1/b with a specific value set by interface contact angles. The
remaining principal curvatureskid is parallel to the Hele-
Shaw cell plates.

From the remarks made in the previous paragraph, we
point out that, in principle, even if normal stresses arenot
considered in the generalized Young-Laplace pressure jump
condition Eq.(6) (or, equivalently, ifd=0), there would still
be an influence of the plate separationb originated from the
perpendicular curvaturek'. Actually, this contribution
would be a dominant term sincek' is much larger thanki.
However, typically one finds thatk' is nearly constant(con-
stant contact angle) [27,28]. Therefore, despite its magnitude
the perpendicular curvature does not significantly affect the
motion in Hele-Shaw cell, because its gradient is nearly zero.
This last point was also discussed by Tryggvason and Aref
[2] in the context of their vortex sheet formulation of the
Hele-Shaw problem: it is found that vorticity generated at the
fluid-fluid interface depends only on derivatives of the pres-
sure. So the addition of a constant-pressure terms,k'd at
the interface has no net effect on the dynamics.

Of course, if the perpendicular curvature is not constant, it
may well reintroduce complicated three-dimensional effects
such as wetting- and velocity-dependent(dynamic) contact
angles into the problem[27,28,30,31]. As discussed in more
detail in Ref. [21] the inclusion of these complex three-
dimensional effects can be avoided in rotating Hele-Shaw
cells if a prewetting film is generated in the glass plates
before the experiments are performed. Under such circum-
stances the boundary condition shown in Eq.(6) is perfectly
valid, and an excellent agreement between experiments and
numerical simulations is obtained[21]. So in this paper we
can say that the influence of gap spacingb on the evolution
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of the system comes from the inclusion of the additional
terms in Eq.(6) related to normal viscous stresses at the
moving interface.

We proceed by adapting a weakly nonlinear approach
originally developed to study flow inmotionlessHele-Shaw
cell [32,33] to the current rotating cell problem. First, we
define Fourier expansions for the velocity potentials, which
obey Laplace’s equation¹2f j =0. Then, we expressf j in
terms of the perturbation amplitudeszn by considering the
kinematic boundary conditionn ·=f1=n ·=f2, which refers
to the continuity of the normal velocity across the interface.
Substituting these relations and the modified pressure jump
condition, Eq. (6), into Eq. (2) and Fourier transforming
yields thedimensionlessmode-coupling equation(for nÞ0)

żn = lsndzn + o
n8Þ0

fFsn,n8dzn8zn−n8 + Gsn,n8dżn8zn−n8g,

s7d

where

lsnd =
unu

Jsnd
f1 − Bsn2 − 1dg s8d

denotes the linear growth rate with

Jsnd = F1 + d
unusunu + Adb2

6
G s9d

and

Fsn,n8d =
unu

JsndH1

2
− BF1 −

n8

2
s3n8 + ndGJ , s10d

Gsn,n8d =
unu

JsndHAf1 − sgnsnn8dg −
1

unu

+ d
b2

6
fAf1 − n2 sgnsnn8d + n82g

− unuf1 + sgnsnn8dg + 3un8ugJ s11d

representing second-order mode-coupling terms. The sgn
function equals ±1 according to the sign of its argument. In
Eq. (7) lengths are rescaled byR and time byR/U, where
U=fb2Rsr1−r2dV2g / f12sh1+h2dg is a characteristic veloc-
ity. Here we define the surface tension parameter

B =
s

R3V2sr1 − r2d
s12d

as the ratio of capillary to centrifugal forces. From now on,
we work with the dimensionless version of the equations.
After appropriate reintroduction of dimensions, it can be
shown that our linear growth rate expression(8) agrees with
the equivalent formula of Alvarez-Lacalleet al. [21]. Notice
that Eq. (7) is conveniently written in terms of the three
relevant dimensionless parameters of the problem:A, B, and
b. As mentioned earlier, note that the extra stress parameter
d=1, originated from Eq.(6), introduces an explicit depen-
dence of the linear growth ratelsnd and also of the mode-

coupling termsFsn,n8d and Gsn,n8d on b and A. Such a
dependence, which within our approach does not exist ifd
=0, is of importance to an accurate description of the finger
competition dynamics in rotating Hele-Shaw cells.

III. LINEAR STABILITY ANALYSIS

Although at the level of linear analysis we do not expect
to detect or rigorously predict important nonlinear effects
such as finger competition, linear stability analysis may still
provide useful information. Some aspects related to the lin-
ear stage in the lowA,0 limit and for very small surface
tensions have been already discussed in Ref.[21]: it has
been found that the use of a modified Young-Laplace pres-
sure boundary condition[similar to our Eq.(6)] introduces a
dependence of the linear growth rate on gap spacing. More-
over, it has been deduced that ifn,1/b@A the gap spacing
corrections would be independent of the viscosity contrast.
The validity of these suggestive linear findings to weakly and
fully nonlinear stages of the flow and its applicability to all
allowed values ofA andB have not been further investigated
analytically in Ref.[21], but instead have been supported by
their experiments and intensive numerical simulations in the
low A,0 ands limit.

Here we use our growth rate Eq.(8) to gain further insight
into the influence of the parametersA, B, andb at the linear
stage of pattern evolution. The reasons for performing such a
linear stability analysis are twofold: first, it allows one to
access and examine some important features of the patterns
already at the linear level. Second, it indicates the necessity
of performing a weakly nonlinear analysis of the system, due
the the lack of information relating the relevant physical pa-
rameters to finger competition events.

Figure 2 plotslsnd as a function of mode numbern for
three different values of the surface tension parameterB: (a)
10−4, (b) 4.0310−4, and (c) 1.6310−3. The color shading
refers to the following values ofb: 1.5310−2 (black), 3.5
310−2 (dark gray), and 4.5310−2 (light gray). By inspecting
Fig. 2, we can examine how the gap spacingb influences the
linear growth rate: for a given value ofB, increasingb leads
to a decreased growth rate of the fastest growing modenmax
[obtained by settingdlsnd /dn=0] and shiftsnmax toward
lower values of azimuthal wave numbers. Sincenmax deter-
mines the typical number of fingers formed at the onset of
the instability, this means that small gaps result in patterns
with a larger number of fingers. This is an important conse-
quence of the inclusion of normal stresses in Eq.(6). We
point out that, due to a small mistake in their linear stability
calculation, the authors of Ref.[21] erroneously concluded
exactly the opposite: larger gap spacings leading to larger
wave numbers. However, our current results do agree with
their own experimental and numerical findings[21].

It is also noticed from Fig. 2 that the selectivity of wave
numbers induced by changes inb is more relevant for
smaller values of the surface tension parameterB, being
hardly observed for sufficiently largeB [see Fig. 2(c)]. A
clearer illustration of the latter is depicted in Fig. 3, which
plotsnmax as a function ofb for increasingly larger values of
B, using the same physical parameters as those used in Fig.
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2. By increasingb in Fig. 3 the typical number of fingers
drops by approximately 16 units in(a) for B=10−4, 3 units in
(b) for 4.0310−4, and roughly by 1 unit in(c) for B=1.6
310−3. It is worth mentioning that ifd=0 the values ofnmax
andlsnmaxd would be overestimated and their dependence on
b completely disappears.

Interestingly, despite the evident dependence of the fastest
growing modenmax on bothb andB as indicated in Figs. 2
and 3, it can be verified that the band of unstable modes,
characterized by the critical mode number

nc =Î1 +
1

B
, s13d

namely, the maximum wave number for whichlsnd is still
positive, depends only onB and for a givenB is evidently
not influenced by changes in gap spacing.

An additional noteworthy point we have verified about the
linear stability features illustrated by Figs. 2 and 3, which
assume specific values of viscosity contrast and extra stress
parameter(respectively,A=−1 andd=1), is the fact that the
linear scenario is not qualitatively modified if any other val-
ues of −1øAø1 are used. For instance, considering the data
shown in Figs. 2 and 3, if we takeA=1 instead ofA=−1, the
new values ofnmax would be very modestly smaller than the
original ones(the largest difference being<0.3% –0.4%, if
b=4.5310−2). This indicates that, at the linear level, the
influence ofA on the dynamics isminor, as opposed to the
important changes induced by the parametersb andB. Inci-
dentally, recall thatA does not play any role at the linear
level if d=0 [see Eq.(9)]. So, despite the inclusion of normal
stressessd=1d in the modified pressure boundary condition
Eq. (6), the viscosity contrast does not necessarily emerge as
a key parameter at purely linear stages of interfacial evolu-
tion. However, there is good experimental and numerical evi-
dence thatA plays amajor role in determining pattern be-
havior (particularly, with respect to finger competition) at
highly nonlinear stages of the flow in both rectangular[2–5]
and rotating Hele-Shaw cells[21].

Based on our previous discussion, it is clear that one must
go beyond linear analysis in order to investigate thoroughly
how B, b, and particularlyA influence important morpho-
logical features of the evolving interface. Section IV demon-
strates the usefulness of our weakly nonlinear approach in
analytically elucidating key aspects related to the finger com-
petition dynamics.

IV. FINGER COMPETITION DYNAMICS

In this section we use the mode-coupling, Eq.(7), to gain
analytical insight into finger competition dynamics in rotat-
ing flows and to examine how it is affected by the action of
A, B, and b. We emphasize that finger competition is an
intrinsically nonlinear effect and could not be properly ad-
dressed by purely linear stability analysis. Consequently, we
concentrate our attention primarily on the weakly nonlinear
terms in Eq.(7).

Within our mode-coupling approach finger competition is
described by the influence of a fundamental moden on the
growth of its subharmonic moden/2 [32,33]. To simplify
our discussion we rewrite the net perturbationz in terms of
cosinefan=zn+z−ng and sinefbn= iszn−z−ndg modes. Without
loss of generality we may choose the phase of the fundamen-
tal mode so thatan.0 andbn=0. From Eq.(7) we obtain the
equations of motion for the subharmonic mode,

ȧn/2 = hlsn/2d + Csndanj an/2, s14d

ḃn/2 = hlsn/2d − Csndanj bn/2, s15d

where the function

FIG. 2. Linear growth ratelsnd as a function ofn, for A=−1,
d=1, and three different values ofB: (a) 10−4, (b) 4.0310−4, and
(c) 1.6310−3. The color labeling refers to three values of gap spac-
ings b: 1.5310−2 (black), 3.5310−2 (dark gray), and 4.5310−2

(light gray). To better guide the eye the maxima of the curves are
explicitly indicated by small dots.

FIG. 3. Fastest growing modenmax as a function ofb, for A=
−1, d=1, and three different values ofB: (a) 10−4, (b) 4.0310−4,
and (c) 1.6310−3.
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Csnd =
1

2
FFS−

n

2
,
n

2
D + lsn/2dGSn

2
,−

n

2
DG s16d

determines finger competition. The wayCsnd is connected to
finger competition can be inferred simply by inspecting Eqs.
(14) and (15). We verify thatCsnd.0 increases the growth
of the cosine subharmonican/2, while inhibiting growth of its
sine subharmonicbn/2. The result is an increased variability
among the lengths of fingers of fluid 1 penetrating into fluid
2. This effect describes finger competition. Sine modesbn/2
would vary the lengths of fingers of fluid 2 penetrating into
fluid 1, but it is clear from Eq.(15) that their growth is
suppressed whenCsnd.0. Reversing the sign ofCsnd would
exactly reverse these conclusions, such that modesbn/2
would be favored over modesan/2. Regardless of its sign, the
function Csnd measures the strength of the competition such
that increasingly larger values ofCsnd.0 fCsnd,0g lead to
enhanced competition of outward[inward] fingers.

Our study of the finger competition dynamics examines
the weakly nonlinear results depicted in Figs. 4 and 5, taking
d=1. Figure 4 plotsCsnd given by Eq.(16) as a function of
viscosity contrastA (with −1øAø1) for three different val-
ues of the surface tension parameterB: (a) 2.0310−4 (black
lines), (b) 5.0310−4 (dark gray lines), and (c) 2.0310−3

(light gray line). The solid(dashed) lines describe the behav-
ior of Csnd for gap spacingb=3.5310−2 s1.5310−2d. To
observe growth of the fundamental mode and also to allow
growth of its subharmonic, we carry out our analysis consid-
ering thatn=nc [see Eq.(13)]. Note that Fig. 4 conveniently
illustrates in a single diagram the way the parametersA, B,
andb affect finger competition in rotating cells.

Complementary information can be obtained by examin-
ing Fig. 5 which uses the same physical parameters as the

ones utilized in Fig. 4, but plots the difference function, de-
fined as

FDif f = uCsndb=b1
− Csndb=b2

u, s17d

where b1=1.5310−2 (dashed lines in Fig. 4) and b2=3.5
310−2 (solid lines in Fig. 4). So the functionFDif f expresses
the absolute value of the difference between the finger com-
petition (dashed and solid) lines Csnd plotted in Fig. 4 for
two distinct values of gap spacing.

The most evident feature of Fig. 4 is the fact that if the
viscosity contrastA tends to zero, the competition function
Csnd also tends to zero, regardless of the value of eitherB or
b. In other words, our results indicate the absence of dy-
namic competition between fingers if the two fluids present
comparable viscosities. Remarkably, this important effect,
which could not be accessed by purely linear analysis,is
detected already at the lowest nonlinear order.

The regulatory behavior ofA with respect to finger com-
petition is reinforced by Fig. 5 where it can be seen thatFDif f
tends quite rapidly to zero when the viscosity contrast van-
ishes, even in that region of the graph in which the difference
between the behaviors is strongest(smaller values ofB).
Therefore, simililarly to what have been found by numerical
simulations[2,3] and experiments[4,5] in rectangular geom-
etry, our analytical findings show thatA also plays a crucial
role in the radial geometry by controlling finger competition
behavior. This is in perfect agreement with the recent rotat-
ing cell experiments performed in the lowA,0 and low
surface tension limit[21].

We continue our discussion by concentrating on the most
frequent situation explored in the literature so far or the case
in which A,0 (inner fluid is more viscous). By observing
Fig. 4 we see that ifA is negative,Csnd,0, indicating in-
creased competition among inward fingers for increasingly

FIG. 4. Csnd as given by Eq.(16) as a function of the viscosity
contrastA, for three different values of the surface tension coeffi-
cient B, and two distinct gap spacingsb. Note that hidden in the
solid (light gray) line labeled(c) there are in fact two lines(an
indistinguishable dashed line lies hidden).

FIG. 5. Variation of the difference functionFDif f as given by Eq.
(17) in terms of the viscosity contrastA and the surface tension
coefficientB.
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larger values ofA. Simultaneously, the competition among
outward fingers would be suppressed. These findings are in
accordance with what is observed in rotating cell experi-
ments in both high[16] and low [21] A,0 limits.

At this point, we turn our attention to the role played byB
whenA,0. Notice that for a given value ofb, the inclina-
tion of the Csnd lines in Fig. 4 is controlled by the dimen-
sionless surface tensionB, so that competition decreases(in-
creases) for larger (smaller) values ofB. Even though, for
fixed B, A determines finger competition, variations inB may
lead to significant changes in the intensity of the competi-
tion. In particular, note that ifB is sufficiently large,Csnd
→0 no matter the value ofA. Conversely, ifB is too small
(nearly zero-surface-tension-limit), competition among in-
ward fingers is supposed to be very intense and the formation
of topological singularities(droplet fission and breakup)
could be expected. Singularity formation has been experi-
mentally verified in Ref.[21], where finger pinch-off and
droplet emission are observed.

Now, we analyze the role of the gap spacingb. From Fig.
4 we notice thatCsnd is indeedb dependent, so that for fixed
B this dependence is stronger(weaker) for smaller (larger)
values ofb, confirming the experimental findings of Refs.
[16,21]. Notice also that this dependence is more evident for
larger values ofA,0. Finally, note that ifB is allowed to
vary, the sensitivity ofCsnd with respect tob is stronger for
smallerB, being completely irrelevant for sufficiently large
values of the dimensionless surface tension. This fact can be
verified in Fig. 4 by noticing that forB=2.0310−3 [labeled
by (c)] the solid and dashed lines simply overlap. This last
feature can be even more clearly observed in Fig. 5 where
the difference function goes quickly to zero asB is increased,
so that, after some sufficiently large value of the surface
tension parameterB, changingb results in no practical dif-
ferences regarding finger competition behavior. Therefore,
we deduce that the effect of normal stresses is not relevant in
the large-B limit.

We proceed by commenting on the caseA.0 (inner fluid
is less viscous). In Fig. 4 we see that by reversing the sign of
A from negative to positive there is in fact just one signifi-
cant change: ifA.0, the competition functionCsnd becomes
positive, indicating that the growth of the cosine subhar-
monic an/2 is now favored[see Eq.(14)]. This causes in-
creased competition amongoutward fingers. Interestingly,
concerning the action ofB andb, the rest of the conclusions
reached above for the caseA,0 apparently remain valid for
positive viscosity contrast. This is also evident from Fig. 5
which depicts aFDif f function that is symmetric under sign
reversal ofA. It is also easy to see that competition dynamics
is more (and equally) sensitive to changes inb, for larger
values ofA, no matter if it is positive or negative.

We close this section by making a few remarks about our
mode-coupling description of the finger competition behav-
ior if extra stresses originated from normal velocity gradients
in Eq. (6) arenot taken into account. As expected, ifd=0, we
have verified that the competition dynamics would be com-
pletely insensitive to changes in the gap spacingb. Of
course, this would not be in agreement with recent experi-
mental studies of the system[16,21]. We also have found

that the discrepancies between the theoretical analysis for
finger competition withd=0 and the real experiments are
increasingly larger for smaller values of the surface tension
parameterB. Finally, we point out that ifd=0 the effect of
the viscosity contrast on the competition of the fingered
structures would be exaggerated, mainly in the high-uAu limit.
These last remarks reinforce the necessity of introducing nor-
mal stresses into the general theoretical framework of the
problem in order to obtain a better and more reliable under-
standing of the finger competition dynamics in rotating Hele-
Shaw cells.

V. CONCLUSIONS

One of the main reasons that motivated us to develop the
current weakly nonlinear study was the possibility to extract
analytical information about the rotating Hele-Shaw prob-
lem, which otherwise could only be acquired via meticulous
experiments [16,21] or sophisticated numerical methods
[21]. As a result of our mode-coupling approach several fea-
tures of the patterns formed in rotating cells, especially those
related to finger competition dynamics, can now be ex-
plained and predicted analytically. Our analysis explicitly in-
dicates that the link between the finger competition dynamics
and the parametersA, B, and b occurs through enhanced
growth of subharmonic perturbations. We stress that the fin-
ger competition mechanism we propose is consistent with
others already studied in the literature[16,21].

Our mode-coupling approach allows one to study finger
competition considering a rich space of physical parameters,
in the sense that it incorporates the combined role of all three
relevant parameters for the problem: namely, the viscosity
contrastA, the surface tension coefficientB, and the dimen-
sionless gap spacingb. In agreement with previous experi-
mental and numerical investigations of the problem[16,21],
we have concluded thatA has indeed a key role in determin-
ing finger competition, so that competition virtually disap-
pears whenA→0. On the other hand, we have shown thatB
andb can also be of considerable importance for an accurate
description of the problem. For instance, we have deduced
that for sufficiently largeB, competition vanishes regardless
of the particular values ofA andb. Likewise, we have veri-
fied explicitly thatb has a stronger influence on finger com-
petition wheneverB is small andA is large.

Moreover, we have been able to extend our predictions
beyond the universe of parameters normally explored by ex-
isting experiments and simulations[15–26]. Concerning the
values of the viscosity contrast, while the majority of works
in rotating Hele-Shaw cells focus on very low and very high
A,0 limits, we can address its whole range of validity −1
øAø1. This is also true with respect to the parametersB
andb. The welcome flexibility offered by our analytical ap-
proach is very advantageous, since the weakly nonlinear
method provides an accurate approximation of the dynamics,
being nonperturbative with respect to the relevant physical
parameters of the problem. In addition, it permits one to
explore physical situations not yet addressed by in the litera-
ture. For example, ifA.0, we have made a rather specific
prediction: increased competition ofoutward fingers would
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occur for increasingly larger values ofpositiveviscosity con-
trast. Furthermore, we have predicted that forA.0 all other
morphological features related to competition should be
similar to those obtained in theA,0 case. It is worth noting
that some of our specific predictions—mainly those con-
nected to the situation in whichA.0—still need to be
checked experimentally inrotating cells. We hope experi-
mentalists will be willing to test our weakly nonlinear results
for positiveA.

We conclude by pointing out that the main theoretical
considerations employed in this work(weakly nonlinear
mode-coupling theory including normal viscous stresses) are
very likely useful and applicable to other important fluid

dynamics systems, in particular those involving pattern for-
mation in confined fluid flow under variable gap spacing
conditions occurring in lifting Hele-Shaw cells[34–36], and
adhesion-related problems with Newtonian, non-Newtonian,
and magnetic fluids[37–40].
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